Search results
Results from the WOW.Com Content Network
The converse is the Braikenridge–Maclaurin theorem, named for 18th-century British mathematicians William Braikenridge and Colin Maclaurin , which states that if the three intersection points of the three pairs of lines through opposite sides of a hexagon lie on a line, then the six vertices of the hexagon lie on a conic; the conic may be ...
The longest diagonals of a regular hexagon, connecting diametrically opposite vertices, are twice the length of one side. From this it can be seen that a triangle with a vertex at the center of the regular hexagon and sharing one side with the hexagon is equilateral, and that the regular hexagon can be partitioned into six equilateral triangles.
The formula can be proved by using mathematical induction: starting with a triangle, for which the angle sum is 180°, then replacing one side with two sides connected at another vertex, and so on. The sum of the external angles of any simple polygon, if only one of the two external angles is assumed at each vertex, is 2π radians (360°).
These may be considered sides of a hexagon whose sixth side is the line at infinity, but there is no line at infinity in the affine plane. In two instances, a line from a (non-existent) vertex to the opposite vertex would be a line parallel to one of the five tangent lines. Brianchon's theorem stated only for the affine plane would therefore ...
From a tangential quadrilateral, one can form a hexagon with two 180° angles, by placing two new vertices at two opposite points of tangency; all six of the sides of this hexagon lie on lines tangent to the inscribed circle, so its diagonals meet at a point.
That is, the points of intersection of the pairs of opposite sides of the hexagon ADEGBZ are collinear. Lemmas XV and XVII are that, if the point M is determined as the intersection of HK and BG, then the points A, M, and D are collinear. That is, the points of intersection of the pairs of opposite sides of the hexagon BEKHZG are collinear.
For a regular polygon with 10,000 sides (a myriagon) the internal angle is 179.964°. As the number of sides increases, the internal angle can come very close to 180°, and the shape of the polygon approaches that of a circle. However the polygon can never become a circle.
A regular hexagon has nine diagonals: the six shorter ones are equal to each other in length; the three longer ones are equal to each other in length and intersect each other at the center of the hexagon. The ratio of a long diagonal to a side is 2, and the ratio of a short diagonal to a side is .