Search results
Results from the WOW.Com Content Network
A cellular automaton (CA) is Life-like (in the sense of being similar to Conway's Game of Life) if it meets the following criteria: The array of cells of the automaton has two dimensions. Each cell of the automaton has two states (conventionally referred to as "alive" and "dead", or alternatively "on" and "off")
Conway's Game of Life is an example of an outer totalistic cellular automaton with cell values 0 and 1; outer totalistic cellular automata with the same Moore neighborhood structure as Life are sometimes called life-like cellular automata. [52] [53]
The number of live cells per generation of the pattern shown above demonstrating the monotonic nature of Life without Death. Life without Death is a cellular automaton, similar to Conway's Game of Life and other Life-like cellular automaton rules. In this cellular automaton, an initial seed pattern grows according to the same rule as in Conway ...
The evolution of the replicator. Highlife is a cellular automaton similar to Conway's Game of Life.It was devised in 1994 by Nathan Thompson. It is a two-dimensional, two-state cellular automaton in the "Life family" and is described by the rule B36/S23; that is, a cell is born if it has 3 or 6 neighbors and survives if it has 2 or 3 neighbors.
Cellular automata on a two-dimensional grid that can be described in this way are known as Life-like cellular automata. Another common Life-like automaton, Highlife, is described by the rule B36/S23, because having six neighbours, in addition to the original game's B3/S23 rule, causes a birth. HighLife is best known for its frequently occurring ...
Like Life, Rule 110 with a particular repeating background pattern is known to be Turing complete. [2] This implies that, in principle, any calculation or computer program can be simulated using this automaton. An example run of the rule 110 cellular automaton over 256 iterations, starting from a single cell.
A Conus textile shell similar in appearance to Rule 30. [1]Rule 30 is an elementary cellular automaton introduced by Stephen Wolfram in 1983. [2] Using Wolfram's classification scheme, Rule 30 is a Class III rule, displaying aperiodic, chaotic behaviour.
Seeds is a cellular automaton in the same family as the Game of Life, initially investigated by Brian Silverman [1] [2] and named by Mirek Wójtowicz. [1] [3] It consists of an infinite two-dimensional grid of cells, each of which may be in one of two states: on or off. Each cell is considered to have eight neighbors (Moore neighborhood), as in ...