Search results
Results from the WOW.Com Content Network
A cellular automaton consists of a regular grid of cells, each in one of a finite number of states, such as on and off (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions. For each cell, a set of cells called its neighborhood is defined relative to the specified cell.
A cellular automaton (CA) is Life-like (in the sense of being similar to Conway's Game of Life) if it meets the following criteria: The array of cells of the automaton has two dimensions. Each cell of the automaton has two states (conventionally referred to as "alive" and "dead", or alternatively "on" and "off")
A cellular automaton is a type of model studied in mathematics and theoretical biology consisting of a regular grid of cells, each in one of a finite number of states, such as "on" and "off". A pattern in the Life without Death cellular automaton consists of an infinite two-dimensional grid of cells, each of which can be in one of two states ...
In computational and mathematical biology, a biological lattice-gas cellular automaton (BIO-LGCA) is a discrete model for moving and interacting biological agents, [1] a type of cellular automaton. The BIO-LGCA is based on the lattice-gas cellular automaton (LGCA) model used in fluid dynamics.
In von Neumann's cellular automaton, the finite state machines (or cells) are arranged in a two-dimensional Cartesian grid, and interface with the surrounding four cells. As von Neumann's cellular automaton was the first example to use this arrangement, it is known as the von Neumann neighbourhood. The set of FSAs define a cell space of ...
A cellular automaton is defined by its cells (often a one- or two-dimensional array), a finite set of values or states that can go into each cell, a neighborhood associating each cell with a finite set of nearby cells, and an update rule according to which the values of all cells are updated, simultaneously, as a function of the values of their neighboring cells.
As in Conway's Game of Life, at any point in time each cell may be in one of two states: alive or dead. The Critters rule is a block cellular automaton using the Margolus neighborhood. This means that, at each step, the cells of the automaton are partitioned into 2 × 2 blocks and each block is updated independently of the other blocks.
If the left, center, and right cells are denoted (p,q,r) then the corresponding formula for the next state of the center cell can be expressed as p xor (q or r). It is called Rule 30 because in binary, 00011110 2 = 30. The following diagram shows the pattern created, with cells colored based on the previous state of their neighborhood.