enow.com Web Search

  1. Ad

    related to: arcs and chords worksheet

Search results

  1. Results from the WOW.Com Content Network
  2. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's Elements.

  3. Chord (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chord_(geometry)

    Equal chords are subtended by equal angles from the center of the circle. A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem).

  4. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry, a circular segment or disk segment (symbol: ⌓) is a region of a disk [1] which is "cut off" from the rest of the disk by a straight line.

  5. Inscribed angle - Wikipedia

    en.wikipedia.org/wiki/Inscribed_angle

    Equivalently, an inscribed angle is defined by two chords of the circle sharing an endpoint. The inscribed angle theorem relates the measure of an inscribed angle to that of the central angle intercepting the same arc. The inscribed angle theorem appears as Proposition 20 in Book 3 of Euclid's Elements.

  6. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    Arc: any connected part of a circle. Specifying two end points of an arc and a centre allows for two arcs that together make up a full circle. Centre: the point equidistant from all points on the circle. Chord: a line segment whose endpoints lie on the circle, thus dividing a circle into two segments.

  7. Ptolemy's table of chords - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_table_of_chords

    For tiny arcs, the chord is to the arc angle in degrees as π is to 3, or more precisely, the ratio can be made as close as desired to ⁠ π / 3 ⁠ ≈ 1.047 197 55 by making θ small enough. Thus, for the arc of ⁠ 1 / 2 ⁠ °, the chord length is slightly more than the arc angle in degrees. As the arc increases, the ratio of the chord to ...

  8. Circular arc - Wikipedia

    en.wikipedia.org/wiki/Circular_arc

    A circular sector is shaded in green. Its curved boundary of length L is a circular arc. A circular arc is the arc of a circle between a pair of distinct points.If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians (180 degrees); and the other arc, the major arc, subtends an angle ...

  9. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    In geometry, the sagitta (sometimes abbreviated as sag [1]) of a circular arc is the distance from the midpoint of the arc to the midpoint of its chord. [2] It is used extensively in architecture when calculating the arc necessary to span a certain height and distance and also in optics where it is used to find the depth of a spherical mirror ...

  1. Ad

    related to: arcs and chords worksheet