Search results
Results from the WOW.Com Content Network
The ocean-like quality of seashell resonance is due in part to the similarity between airflow and ocean movement sounds. The association of seashells with the ocean likely plays a further role. Resonators attenuate or emphasize some ambient noise frequencies in the environment, including airflow within the resonator and sound originating from ...
Output of a computer model of underwater acoustic propagation in a simplified ocean environment. A seafloor map produced by multibeam sonar. Underwater acoustics (also known as hydroacoustics) is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries.
The sound's source was roughly triangulated to , a remote point in the South Pacific Ocean west of the southern tip of South AmericaThe sound was detected by the Equatorial Pacific Ocean autonomous hydrophone array, [1] a system of hydrophones primarily used to monitor undersea seismicity, ice noise, and marine mammal population and migration.
The Train is the name given to a sound recorded on March 5, 1997, on the Equatorial Pacific Ocean autonomous hydrophone array. The sound rises to a quasi-steady frequency. According to the NOAA, the origin of the sound is most likely generated by a very large iceberg grounded in the Ross Sea, near Cape Adare. [10
The western North Atlantic showing the locations of two experiments that employed ocean acoustic tomography. AMODE, the "Acoustic Mid-Ocean Dynamics Experiment" (1990-1), was designed to study ocean dynamics in an area away from the Gulf Stream, and SYNOP (1988-9) was designed to synoptically measure aspects of the Gulf Stream.
The SOFAR channel (short for sound fixing and ranging channel), or deep sound channel (DSC), [1] is a horizontal layer of water in the ocean at which depth the speed of sound is at its minimum. The SOFAR channel acts as a waveguide for sound, and low frequency sound waves within the channel may travel thousands of miles before dissipating.
Scientists used an acoustic antenna: a group of underwater devices attached to the back of the ship that detect and record ocean sounds from all directions. The antenna allowed them to figure out ...
The SOFAR channel (short for Sound Fixing and Ranging channel), or deep sound channel (DSC), is a horizontal layer of water in the ocean at which depth the speed of sound is minimal, in average around 1200 m deep. [2] It acts as a wave-guide for sound, and low frequency sound waves within the channel may travel thousands of miles before ...