Search results
Results from the WOW.Com Content Network
Compressible flow (or gas dynamics) is the branch of fluid mechanics that deals with flows having significant changes in fluid density.While all flows are compressible, flows are usually treated as being incompressible when the Mach number (the ratio of the speed of the flow to the speed of sound) is smaller than 0.3 (since the density change due to velocity is about 5% in that case). [1]
Showing wall boundary condition. The most common boundary that comes upon in confined fluid flow problems is the wall of the conduit. The appropriate requirement is called the no-slip boundary condition, wherein the normal component of velocity is fixed at zero, and the tangential component is set equal to the velocity of the wall. [1]
Boundary conditions are simple to apply. The stream function is constant on no-flow surfaces, with no-slip velocity conditions on surfaces. Stream function differences across open channels determine the flow. No boundary conditions are necessary on open boundaries, though consistent values may be used with some problems.
If you can address this concern by improving, copyediting, sourcing, renaming, or merging the page, please edit this page and do so. You may remove this message if you improve the article or otherwise object to deletion for any reason. Although not required, you are encouraged to explain why you object to the deletion, either in your edit summary or on the talk page. If this template is ...
A 3D model is reconstructed from this data and the fluid flow can be computed. Blood properties such as density and viscosity, and realistic boundary conditions (e.g. systemic pressure) have to be taken into consideration. Therefore, making it possible to analyze and optimize the flow in the cardiovascular system for different applications. [79]
For a compressible fluid in a tube the volumetric flow rate Q(x) and the axial velocity are not constant along the tube; but the mass flow rate is constant along the tube length. The volumetric flow rate is usually expressed at the outlet pressure. As fluid is compressed or expanded, work is done and the fluid is heated or cooled.
This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain terms in the equations for the studied flow. This may provide possibilities to neglect terms in (certain areas of) the considered flow.
Flow chart of PISO algorithm. The algorithm can be summed up as follows: Set the boundary conditions. Solve the discretized momentum equation to compute an intermediate velocity field. Compute the mass fluxes at the cells faces. Solve the pressure equation. Correct the mass fluxes at the cell faces.