Search results
Results from the WOW.Com Content Network
A repfigit, or Keith number, is an integer such that, when its digits start a Fibonacci sequence with that number of digits, the original number is eventually reached. An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47.
A page of the Liber Abaci from the National Central Library.The list on the right shows the numbers 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 (the Fibonacci sequence).
For instance, the Zeckendorf representation of 19 is 101001 (where the 1's mark the positions of the Fibonacci numbers used in the expansion 19 = 13 + 5 + 1), the binary sequence 101001, interpreted as a binary number, represents 41 = 32 + 8 + 1, and the 19th fibbinary number is 41.
The number in the n-th month is the n-th Fibonacci number. [21] The name "Fibonacci sequence" was first used by the 19th-century number theorist Édouard Lucas. [22] Solution to Fibonacci rabbit problem: In a growing idealized population, the number of rabbit pairs form the Fibonacci sequence.
As a biprime with proper divisors 1, 3 and 7, twenty-one has a prime aliquot sum of 11 within an aliquot sequence containing only one composite number (21, 11, 1, 0); it is the second composite number with an aliquot sum of 11, following 18. 21 is the first member of the second cluster of consecutive discrete semiprimes (21, 22), where the next such cluster is (33, 34, 35).
64 = 34 + 21 + 5 + 3 + 1 64 = 34 + 13 + 8 + 5 + 3 + 1. but these are not Zeckendorf representations because 34 and 21 are consecutive Fibonacci numbers, as are 5 and 3. For any given positive integer, its Zeckendorf representation can be found by using a greedy algorithm, choosing the largest possible Fibonacci number at each stage.
If the number subtracted was the i th Fibonacci number F(i), put a 1 in place i − 2 in the code word (counting the left most digit as place 0). Repeat the previous steps, substituting the remainder for N, until a remainder of 0 is reached. Place an additional 1 after the rightmost digit in the code word.
Lamé's Theorem is the result of Gabriel Lamé's analysis of the complexity of the Euclidean algorithm.Using Fibonacci numbers, he proved in 1844 [1] [2] that when looking for the greatest common divisor (GCD) of two integers a and b, the algorithm finishes in at most 5k steps, where k is the number of digits (decimal) of b.