Search results
Results from the WOW.Com Content Network
Numerical aperture is commonly used in microscopy to describe the acceptance cone of an objective (and hence its light-gathering ability and resolution), and in fiber optics, in which it describes the range of angles within which light that is incident on the fiber will be transmitted along it.
A lower f-number means a larger relative aperture and more light entering the system, while a higher f-number means a smaller relative aperture and less light entering the system. The f-number is related to the numerical aperture (NA) of the system, which measures the range of angles over which light can enter or exit the system.
The limit on maximum concentration (shown) is an optic with an entrance aperture S, in air (n i = 1) collecting light within a solid angle of angle 2α (its acceptance angle) and sending it to a smaller area receiver Σ immersed in a medium of refractive index n, whose points are illuminated within a solid angle of angle 2β. From the above ...
Memorial in Jena, Germany to Ernst Karl Abbe, who approximated the diffraction limit of a microscope as = , where d is the resolvable feature size, λ is the wavelength of light, n is the index of refraction of the medium being imaged in, and θ (depicted as α in the inscription) is the half-angle subtended by the optical objective lens (representing the numerical aperture).
Without this oil layer, not only is maximum numerical aperture not realized, but the condenser may not be able to precisely focus light on the object. Condensers with a numerical aperture of 0.95 or less are designed to be used without oil or other fluid on the top lens and are termed dry condensers.
Here NA is the numerical aperture, is half the included angle of the lens, which depends on the diameter of the lens and its focal length, is the refractive index of the medium between the lens and the specimen, and is the wavelength of light illuminating or emanating from (in the case of fluorescence microscopy) the sample.
In optics, in particular scalar diffraction theory, the Fresnel number (F), named after the physicist Augustin-Jean Fresnel, is a dimensionless number relating to the pattern a beam of light forms on a surface when projected through an aperture.
In both cases the numerical aperture of the objective is 1.49 and the refractive index of the medium 1.52. The wavelength of the emitted light is assumed to be 600 nm and, in case of the confocal microscope, that of the excitation light 500 nm with circular polarization.