Search results
Results from the WOW.Com Content Network
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.
The Hodge Laplacian, also known as the Laplace–de Rham operator, is a differential operator acting on differential forms. (Abstractly, it is a second order operator on each exterior power of the cotangent bundle.) This operator is defined on any manifold equipped with a Riemannian- or pseudo-Riemannian metric.
The Laplace operator is a second-order differential operator in the n-dimensional Euclidean space, defined as the divergence of the gradient (). Thus if f {\displaystyle f} is a twice-differentiable real-valued function , then the Laplacian of f {\displaystyle f} is the real-valued function defined by:
Verbally, the second version is the second derivative in the direction of the gradient. In the case of the infinity Laplace equation Δ ∞ u = 0 {\displaystyle \Delta _{\infty }u=0} , the two definitions are equivalent.
For any twice-differentiable real-valued function f defined on Euclidean space R n, the Laplace operator (also known as the Laplacian) takes f to the divergence of its gradient vector field, which is the sum of the n pure second derivatives of f with respect to each vector of an orthonormal basis for R n.
The continuous -Laplace operator is a second-order differential operator that can be well-translated to finite weighted graphs. It allows the translation of various partial differential equations, e.g., the heat equation, to the graph setting.
Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation ...
In general solutions of equations involving the p-Laplacian do not have second order derivatives in classical sense, thus solutions to these equations have to be understood as weak solutions. For example, we say that a function u belonging to the Sobolev space W 1 , p ( Ω ) {\displaystyle W^{1,p}(\Omega )} is a weak solution of