Search results
Results from the WOW.Com Content Network
Spectral lines of their light can be used to determine their redshift. For supernovae at redshift less than around 0.1, or light travel time less than 10 percent of the age of the universe, this gives a nearly linear distance–redshift relation due to Hubble's law. At larger distances, since the expansion rate of the universe has changed over ...
The red line is the path of a light beam emitted by the quasar about 13 billion years ago and reaching Earth at the present day. The orange line shows the present-day distance between the quasar and Earth, about 28 billion light-years, which is a larger distance than the age of the universe multiplied by the speed of light, ct.
In a big bang with only the matter and radiation known in the Standard Model, two widely separated regions of the observable universe cannot have equilibrated because they move apart from each other faster than the speed of light and thus have never come into causal contact. In the early Universe, it was not possible to send a light signal ...
“If you were there, in this infant universe, one second would seem like one second – but from our position, more than 12 billion years into the future, that early time appears to drag.”
For hundreds of a millions of years, the universe existed in the dark ages—an epoch when only primordial gasses existed. Then, a period of reionization, cleared away this foggy existence an ...
Vacuum state is a configuration of quantum fields representing a local minimum (but not necessarily a global minimum) of energy. Inflationary models propose that at approximately 10 −36 seconds after the Big Bang, vacuum state of the Universe was different from the one seen at the present time: the inflationary vacuum had a much higher energy density.
The universe's expansion passed an inflection point about five or six billion years ago when the universe entered the modern "dark-energy-dominated era" where the universe's expansion is now accelerating rather than decelerating. The present-day universe is quite well understood, but beyond about 100 billion years of cosmic time (about 86 ...
The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. [1] The notion of an expanding universe was first scientifically originated by physicist Alexander Friedmann in 1922 with the mathematical derivation of the Friedmann equations.