Search results
Results from the WOW.Com Content Network
Eukaryotic transcription is the elaborate process that eukaryotic cells use to copy genetic information stored in DNA into units of transportable complementary RNA replica. [1] Gene transcription occurs in both eukaryotic and prokaryotic cells.
Transcription is the process of copying a segment of DNA into RNA. Some segments of DNA are transcribed into RNA molecules that can encode proteins, called messenger RNA (mRNA). Other segments of DNA are transcribed into RNA molecules called non-coding RNAs (ncRNAs). Both DNA and RNA are nucleic acids, which use base pairs of nucleotides as a ...
Reverse transcription is the transfer of information from RNA to DNA (the reverse of normal transcription). This is known to occur in the case of retroviruses, such as HIV, as well as in eukaryotes, in the case of retrotransposons and telomere synthesis. It is the process by which genetic information from RNA gets transcribed into new DNA.
Eukaryotic transcription, the process of copying the genetic information stored in DNA into RNA in eukaryotes; Reverse transcription, the process of copying the genetic information stored in RNA into DNA in viruses; Transcription, an academic journal about genetics; Transcription factor, a protein that controls the rate of transcription of ...
Bacterial transcription is the process in which a segment of bacterial DNA is copied into a newly synthesized strand of messenger RNA (mRNA) with use of the enzyme RNA polymerase. The process occurs in three main steps: initiation, elongation, and termination; and the result is a strand of mRNA that is complementary to a single strand of DNA.
RNA-dependent DNA polymerases are a specialized class of polymerases that copy the sequence of an RNA strand into DNA. They include reverse transcriptase , which is a viral enzyme involved in the infection of cells by retroviruses , and telomerase , which is required for the replication of telomeres.
Overview of eukaryotic messenger RNA (mRNA) translation Translation of mRNA and ribosomal protein synthesis Initiation and elongation stages of translation involving RNA nucleobases, the ribosome, transfer RNA, and amino acids The three phases of translation: (1) in initiation, the small ribosomal subunit binds to the RNA strand and the initiator tRNA–amino acid complex binds to the start ...
RNA is the main carrier of genetic information that is responsible for the process of converting DNA into an organism's phenotype. A gene can give rise to a single-stranded messenger RNA (mRNA) through a molecular process known as transcription; this mRNA is complementary to the strand of DNA it originated from. [6]