Search results
Results from the WOW.Com Content Network
The open-circuit test, or no-load test, is one of the methods used in electrical engineering to determine the no-load impedance in the excitation branch of a transformer. The no load is represented by the open circuit, which is represented on the right side of the figure as the "hole" or incomplete part of the circuit.
A different form of short-circuit testing is done to assess the mechanical strength of the transformer windings, and their ability to withstand the high forces produced if an energized transformer experiences a short-circuit fault. Currents during such events can be several times the normal rated current.
Select capacitor C 1, replace it by a test voltage V X, and replace C 2 by an open circuit. Then the resistance seen by the test voltage is found using the circuit in the right panel of Figure 1 and is simply V X / I X = R 1. Form the product C 1 R 1. Add these terms. In effect, it is as though each capacitor charges and discharges through the ...
Setting a capacitor value to zero corresponds to an open circuit, while a zero-valued inductor is a short circuit. So for calculation of the , all other capacitors are open-circuited and all other inductors are short-circuited. This is the essence of the ZVT method, which reduces to OCT when only capacitors are involved.
It is also known as short-circuit test (because it is the mechanical analogy of a transformer short-circuit test), [1] locked rotor test or stalled torque test. [2] From this test, short-circuit current at normal voltage, power factor on short circuit, total leakage reactance, and starting torque of the motor can be found.
The open-circuit saturation curve (also open-circuit characteristic, OCC) of a synchronous generator is a plot of the output open circuit voltage as a function of the excitation current or field. The curve is typically plotted alongside the synchronous impedance curve .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The surge is defined by the Combination Wave Generator's open-circuit voltage and short-circuit current waveforms, characterized by front time, duration, and peak values. With an open circuit output, the surge voltage is a double exponential pulse in the form of k ( e − α t − e − β t ) {\displaystyle k(e^{-\alpha t}-e^{-\beta t})} .