Search results
Results from the WOW.Com Content Network
Tanh-sinh quadrature is a method for numerical integration introduced by Hidetoshi Takahashi and Masatake Mori in 1974. [1] It is especially applied where singularities or infinite derivatives exist at one or both endpoints. The method uses hyperbolic functions in the change of variables
SciPy (pronounced / ˈ s aɪ p aɪ / "sigh pie" [2]) is a free and open-source Python library used for scientific computing and technical computing. [3]SciPy contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering.
In numerical analysis Gauss–Laguerre quadrature (named after Carl Friedrich Gauss and Edmond Laguerre) is an extension of the Gaussian quadrature method for approximating the value of integrals of the following kind: + (). In this case
The equation of a 1-D Gabor wavelet is a Gaussian modulated by a complex exponential, described as follows: [3] = / ()As opposed to other functions commonly used as bases in Fourier Transforms such as and , Gabor wavelets have the property that they are localized, meaning that as the distance from the center increases, the value of the function becomes exponentially suppressed.
In numerical analysis, Romberg's method [1] is used to estimate the definite integral by applying Richardson extrapolation [2] repeatedly on the trapezium rule or the rectangle rule (midpoint rule). The estimates generate a triangular array .
The function to be transformed is first multiplied by a Gaussian function, which can be regarded as a window function, and the resulting function is then transformed with a Fourier transform to derive the time-frequency analysis. [1] The window function means that the signal near the time being analyzed will have higher weight.
Generalized hypergeometric functions include the (Gaussian) hypergeometric function and the confluent hypergeometric function as special cases, which in turn have many particular special functions as special cases, such as elementary functions, Bessel functions, and the classical orthogonal polynomials.
The Gaussian quadrature chooses more suitable points instead, so even a linear function approximates the function better (the black dashed line). As the integrand is the third-degree polynomial y ( x ) = 7 x 3 – 8 x 2 – 3 x + 3 , the 2-point Gaussian quadrature rule even returns an exact result.