Search results
Results from the WOW.Com Content Network
A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry , a circular segment or disk segment (symbol: ⌓ ) is a region of a disk [ 1 ] which is "cut off" from the rest of the disk by a straight line.
A circular sector is shaded in green. Its curved boundary of length L is a circular arc. A circular arc is the arc of a circle between a pair of distinct points.If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians (180 degrees); and the other arc, the major arc, subtends an angle ...
In the 2nd century AD, Ptolemy compiled a more extensive table of chords in his book on astronomy, giving the value of the chord for angles ranging from 1 / 2 to 180 degrees by increments of 1 / 2 degree. Ptolemy used a circle of diameter 120, and gave chord lengths accurate to two sexagesimal (base sixty) digits after the ...
The minor sector is shaded in green while the major sector is shaded white. A circular sector, also known as circle sector or disk sector or simply a sector (symbol: ⌔), is the portion of a disk (a closed region bounded by a circle) enclosed by two radii and an arc, with the smaller area being known as the minor sector and the larger being the major sector. [1]
Arc length is the distance between two points along a section of a curve. Determining the length of an irregular arc segment by approximating the arc segment as connected (straight) line segments is also called curve rectification. For a rectifiable curve these approximations don't get arbitrarily large (so the curve has a finite length).
The area of a polygon can be calculated from individual quadrangles of the above type, from (analogously) individual triangle bounded by a segment of the polygon and two meridians, [15] by a line integral with Green's theorem, [16] or via an equal-area projection as commonly done in GIS.
The external surface area A of the cap equals r2 only if solid angle of the cone is exactly 1 steradian. Hence, in this figure θ = A/2 and r = 1. The solid angle of a cone with its apex at the apex of the solid angle, and with apex angle 2 θ, is the area of a spherical cap on a unit sphere
The ratio of the area of the envelope of area bisectors to the area of the triangle is invariant for all triangles, and equals (), i.e. 0.019860... or less than 2%. A cleaver of a triangle is a line segment that bisects the perimeter of the triangle and has one endpoint at the midpoint of one of the three sides.