Ad
related to: graph product function
Search results
Results from the WOW.Com Content Network
In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V(G 1) × V(G 2), where V(G 1) and V(G 2) are the vertex sets of G 1 and G 2, respectively.
Quadratic production function. Any of these equations can be plotted on a graph. A typical (quadratic) production function is shown in the following diagram under the assumption of a single variable input (or fixed ratios of inputs so they can be treated as a single variable).
The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4.The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1.
If a connected graph is a Cartesian product, it can be factorized uniquely as a product of prime factors, graphs that cannot themselves be decomposed as products of graphs. [2] However, Imrich & Klavžar (2000) describe a disconnected graph that can be expressed in two different ways as a Cartesian product of prime graphs:
Wire-grid Cobb–Douglas production surface with isoquants A two-input Cobb–Douglas production function with isoquants. In economics and econometrics, the Cobb–Douglas production function is a particular functional form of the production function, widely used to represent the technological relationship between the amounts of two or more inputs (particularly physical capital and labor) and ...
A sigmoid function is any mathematical function whose graph has a characteristic S-shaped or sigmoid curve. A common example of a sigmoid function is the logistic function , which is defined by the formula: [ 1 ]
The rooted product of graphs. In mathematical graph theory, the rooted product of a graph G and a rooted graph H is defined as follows: take | V(G) | copies of H, and for every vertex v i of G, identify v i with the root node of the i-th copy of H. More formally, assuming that
In graph theory, the zig-zag product of regular graphs,, denoted by , is a binary operation which takes a large graph and a small graph and produces a graph that approximately inherits the size of the large one but the degree of the small one.
Ad
related to: graph product function