Search results
Results from the WOW.Com Content Network
The operator is said to be positive-definite, and written >, if , >, for all {}. [ 1 ] Many authors define a positive operator A {\displaystyle A} to be a self-adjoint (or at least symmetric) non-negative operator.
The positive definiteness of a Hermitian covariance matrix ensures the well-definedness of multivariate distributions. [3] Hermitian matrices are applied in the design and analysis of communications system, especially in the field of multiple-input multiple-output (MIMO) systems. Channel matrices in MIMO systems often exhibit Hermitian properties.
In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum ...
In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector , where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...
In practical terms, having an essentially self-adjoint operator is almost as good as having a self-adjoint operator, since we merely need to take the closure to obtain a self-adjoint operator. In physics, the term Hermitian refers to symmetric as well as self-adjoint operators alike. The subtle difference between the two is generally overlooked.
Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are unitary operators: N* = N −1; Hermitian operators (i.e., self-adjoint operators): N* = N; skew-Hermitian operators: N* = −N; positive operators: N = MM* for some M (so N is self-adjoint).
Hermitian operators (i.e., selfadjoint operators): N* = N; (also, anti-selfadjoint operators: N* = −N) positive operators: N = MM* normal matrices can be seen as normal operators if one takes the Hilbert space to be C n. The spectral theorem extends to a more general class of matrices. Let A be an operator on a finite-dimensional inner ...
Let and be two operators, where is Hermitian and positive semi-definite. In most applications, ρ {\displaystyle \rho } and A {\displaystyle A} fulfill further properties, that also A {\displaystyle A} is Hermitian and ρ {\displaystyle \rho } is a density matrix (which is also trace-normalized), but these are not required for the definition.