Search results
Results from the WOW.Com Content Network
Atomic diffusion in polycrystalline materials is therefore often modeled using an effective diffusion coefficient, which is a combination of lattice, and grain boundary diffusion coefficients. In general, surface diffusion occurs much faster than grain boundary diffusion , and grain boundary diffusion occurs much faster than lattice diffusion .
Surface diffusion, also referred to as atomic diffusion, describes the process along the surface interface, when atoms move from surface to surface to free energy. The grain boundary diffusion terms the free migration of atoms in free atomic lattice spaces. This is based on polycrystalline layers and its boundaries of incomplete matching of the ...
العربية; বাংলা; Беларуская; Беларуская (тарашкевіца) Bosanski; Dansk; Ελληνικά; Español; فارسی
The Kirkendall effect is the motion of the interface between two metals that occurs due to the difference in diffusion rates of the metal atoms. The effect can be observed, for example, by placing insoluble markers at the interface between a pure metal and an alloy containing that metal, and heating to a temperature where atomic diffusion is reasonable for the given timescale; the boundary ...
Atomic diffusion on the surface of a crystal. The shaking of the atoms is an example of thermal fluctuations. Likewise, thermal fluctuations provide the energy necessary for the atoms to occasionally hop from one site to a neighboring one. For simplicity, the thermal fluctuations of the blue atoms are not shown.
Each atomic species can be given its own intrinsic diffusion coefficient ~ and ~, expressing the diffusion of a certain species in the whole system. The interdiffusion coefficient D ~ {\displaystyle {\tilde {D}}} is defined by the Darken's equation as:
Atomic battery; Atomic beam; Atomic clock; Atomic coherence; Atomic diffusion; Atomic electron configuration table; Atomic electron transition; Atomic emission spectrum; Atomic force microscopy; Atomic form factor; Atomic fountain; Atomic gas; Atomic line filter; Atomic mass unit; Atomic mirror; Atomic nucleus; Atomic number; Atomic orbital ...
The concept of diffusion is widely used in many fields, including physics (particle diffusion), chemistry, biology, sociology, economics, statistics, data science, and finance (diffusion of people, ideas, data and price values). The central idea of diffusion, however, is common to all of these: a substance or collection undergoing diffusion ...