enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    In gas dynamics we are interested in the local relations between pressure, density and temperature, rather than considering a fixed quantity of gas. By considering the density ρ = M / V {\displaystyle \rho =M/V} as the inverse of the volume for a unit mass, we can take ρ = 1 / V {\displaystyle \rho =1/V} in these relations.

  3. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    The metric equivalent flow factor (K v) is calculated using metric units: =, where [3]. K v is the flow factor (expressed in m 3 /h), Q is the flowrate (expressed in m 3 /h), SG is the specific gravity of the fluid (for water = 1),

  4. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    Substituting from the ideal gas equation gives finally: = where n = number of moles of gas in the thermodynamic system under consideration and R = universal gas constant. On a per mole basis, the expression for difference in molar heat capacities becomes simply R for ideal gases as follows:

  5. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer

  6. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  7. Mayer's relation - Wikipedia

    en.wikipedia.org/wiki/Mayer's_Relation

    In the 19th century, German chemist and physicist Julius von Mayer derived a relation between the molar heat capacity at constant pressure and the molar heat capacity at constant volume for an ideal gas.

  8. Van der Waals equation - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_equation

    One way to write the van der Waals equation is: [8] [9] [10] = where is pressure, is temperature, and = / is molar volume. In addition is the Avogadro constant, is the volume, and is the number of molecules (the ratio / is a physical quantity with base unit mole (symbol mol) in the SI).

  9. Rüchardt experiment - Wikipedia

    en.wikipedia.org/wiki/Rüchardt_Experiment

    The Rüchardt experiment, [1] [2] [3] invented by Eduard Rüchardt, is a famous experiment in thermodynamics, which determines the ratio of the molar heat capacities of a gas, i.e. the ratio of (heat capacity at constant pressure) and (heat capacity at constant volume) and is denoted by (gamma, for ideal gas) or (kappa, isentropic exponent, for real gas).