Search results
Results from the WOW.Com Content Network
This is a list of surfaces in mathematics. They are divided into minimal surfaces , ruled surfaces , non-orientable surfaces , quadrics , pseudospherical surfaces , algebraic surfaces , and other types of surfaces.
The two families of lines on a smooth (split) quadric surface. In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine ...
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.
A surface of general type with the same Betti numbers as a minimal surface not of general type must have the Betti numbers of either a projective plane P 2 or a quadric P 1 ×P 1. Shavel (1978) constructed some "fake quadrics": surfaces of general type with the same Betti numbers as quadrics. Beauville surfaces give further examples.
Labs surface, a certain septic with 99 nodes; Endrass surface, a certain surface of degree 8 with 168 nodes; Sarti surface, a certain surface of degree 12 with 600 nodes; Quotient surfaces, surfaces that are constructed as the orbit space of some other surface by the action of a finite group; examples include Kummer, Godeaux, Hopf, and Inoue ...
For more examples see the list of algebraic surfaces. The first five examples are in fact birationally equivalent. That is, for example, a cubic surface has a function field isomorphic to that of the projective plane, being the rational functions in two indeterminates. The Cartesian product of two curves also provides examples.
For example, a hyperboloid of one sheet is a quadric surface in ruled by two different families of lines, one line of each passing through each point of the surface; each family corresponds under the Plücker map to a conic section within the Klein quadric in .
Attempting to rotate a QGA quadric surface may result in a different type of quadric surface, or a quadric surface that is rotated and distorted in an unexpected way. Attempting to rotate a QGA point may produce a value that projects as the expected rotated vector, but the produced value is generally not a correct embedding of the rotated vector.