Search results
Results from the WOW.Com Content Network
The product of the incircle radius and the circumcircle radius of a triangle with sides , , and is [13] = (+ +). Some relations among the sides, incircle radius, and circumcircle radius are: [ 14 ] a b + b c + c a = s 2 + ( 4 R + r ) r , a 2 + b 2 + c 2 = 2 s 2 − 2 ( 4 R + r ) r . {\displaystyle {\begin{aligned}ab+bc+ca&=s^{2}+(4R+r)r,\\a^{2 ...
The useful minimum bounding circle of three points is defined either by the circumcircle (where three points are on the minimum bounding circle) or by the two points of the longest side of the triangle (where the two points define a diameter of the circle). It is common to confuse the minimum bounding circle with the circumcircle.
Given a circle whose center is point O, choose three points V, C, D on the circle. Draw lines VC and VD: angle ∠DVC is an inscribed angle. Now draw line OV and extend it past point O so that it intersects the circle at point E. Angle ∠DVC intercepts arc DC on the circle. Suppose this arc includes point E within it.
Thales’ theorem: if AC is a diameter and B is a point on the diameter's circle, the angle ∠ ABC is a right angle.. In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle.
The area A of any triangle is the product of its inradius (the radius of its inscribed circle) and its semiperimeter: A = r s . {\displaystyle A=rs.} The area of a triangle can also be calculated from its semiperimeter and side lengths a, b, c using Heron's formula :
In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).
The incircle itself may be constructed by dropping a perpendicular from the incenter to one of the sides of the triangle and drawing a circle with that segment as its radius. [3] The incenter lies at equal distances from the three line segments forming the sides of the triangle, and also from the three lines containing those segments.
Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have.In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation.