enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Space (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Space_(mathematics)

    While modern mathematics uses many types of spaces, such as Euclidean spaces, linear spaces, topological spaces, Hilbert spaces, or probability spaces, it does not define the notion of "space" itself. [1] [a] Fig. 1: Overview of types of abstract spaces. An arrow indicates is also a kind of; for instance, a normed vector space is also a metric ...

  3. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    Unlike in a geodesic metric space, the infimum does not have to be attained. An example of a length space which is not geodesic is the Euclidean plane minus the origin: the points (1, 0) and (-1, 0) can be joined by paths of length arbitrarily close to 2, but not by a path of length 2. An example of a metric space which is not a length space is ...

  4. Real coordinate space - Wikipedia

    en.wikipedia.org/wiki/Real_coordinate_space

    Cartesian coordinates identify points of the Euclidean plane with pairs of real numbers. In mathematics, the real coordinate space or real coordinate n-space, of dimension n, denoted R n or , is the set of all ordered n-tuples of real numbers, that is the set of all sequences of n real numbers, also known as coordinate vectors.

  5. Space - Wikipedia

    en.wikipedia.org/wiki/Space

    Debates concerning the nature, essence and the mode of existence of space date back to antiquity; namely, to treatises like the Timaeus of Plato, or Socrates in his reflections on what the Greeks called khôra (i.e. "space"), or in the Physics of Aristotle (Book IV, Delta) in the definition of topos (i.e. place), or in the later "geometrical conception of place" as "space qua extension" in the ...

  6. Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_space

    Euclidean space was introduced by ancient Greeks as an abstraction of our physical space. Their great innovation, appearing in Euclid's Elements was to build and prove all geometry by starting from a few very basic properties, which are abstracted from the physical world, and cannot be mathematically proved because of the lack of more basic tools.

  7. Separable space - Wikipedia

    en.wikipedia.org/wiki/Separable_space

    A subspace of a separable space need not be separable (see the Sorgenfrey plane and the Moore plane), but every open subspace of a separable space is separable (Willard 1970, Th 16.4b). Also every subspace of a separable metric space is separable. In fact, every topological space is a subspace of a separable space of the same cardinality.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Complete metric space - Wikipedia

    en.wikipedia.org/wiki/Complete_metric_space

    The space C [a, b] of continuous real-valued functions on a closed and bounded interval is a Banach space, and so a complete metric space, with respect to the supremum norm. However, the supremum norm does not give a norm on the space C (a, b) of continuous functions on (a, b), for it may contain unbounded functions.