enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Fig. 7a – Proof of the law of cosines for acute angle γ by "cutting and pasting". Fig. 7b – Proof of the law of cosines for obtuse angle γ by "cutting and pasting". One can also prove the law of cosines by calculating areas. The change of sign as the angle γ becomes obtuse makes a case distinction necessary. Recall that

  3. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number , except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°).

  4. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    To find an unknown angle, the law of cosines is safer than the law of sines. The reason is that the value of sine for the angle of the triangle does not uniquely determine this angle. For example, if sin β = 0.5, the angle β can equal either 30° or 150°. Using the law of cosines avoids this problem: within the interval from 0° to 180° the ...

  5. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    If the law of cosines is used to solve for c, the necessity of inverting the cosine magnifies rounding errors when c is small. In this case, the alternative formulation of the law of haversines is preferable. [3] A variation on the law of cosines, the second spherical law of cosines, [4] (also called the cosine rule for angles [1]) states:

  6. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    With these functions, one can answer virtually all questions about arbitrary triangles by using the law of sines and the law of cosines. [33] These laws can be used to compute the remaining angles and sides of any triangle as soon as two sides and their included angle or two angles and a side or three sides are known.

  7. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.

  8. Trigonometry of a tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Trigonometry_of_a_tetrahedron

    By the spherical law of cosines: ⁡, = ⁡, ⁡, + ⁡, ⁡, ⁡ Take the spherical triangle of the tetrahedron X {\displaystyle X} at the point P i {\displaystyle P_{i}} . The sides are given by α i , l , α k , j , λ {\displaystyle \alpha _{i,l},\alpha _{k,j},\lambda } and the only known opposite angle is that of λ {\displaystyle \lambda ...

  9. cis (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Cis_(mathematics)

    cis is a mathematical notation defined by cis x = cos x + i sin x, [nb 1] where cos is the cosine function, i is the imaginary unit and sin is the sine function. x is the argument of the complex number (angle between line to point and x-axis in polar form).