enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .

  3. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    In mathematics, Euler's identity [note 1] (also known as Euler's equation) is the equality + = where e {\displaystyle e} is Euler's number , the base of natural logarithms , i {\displaystyle i} is the imaginary unit , which by definition satisfies i 2 = − 1 {\displaystyle i^{2}=-1} , and

  4. Proof that e is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_e_is_irrational

    The number e was introduced by Jacob Bernoulli in 1683. More than half a century later, Euler , who had been a student of Jacob's younger brother Johann , proved that e is irrational ; that is, that it cannot be expressed as the quotient of two integers.

  5. History of logarithms - Wikipedia

    en.wikipedia.org/wiki/History_of_logarithms

    Here, Euler's number e makes the shaded area equal to 1. Opus geometricum posthumum, 1668. In 1649, Alphonse Antonio de Sarasa, a former student of Grégoire de Saint-Vincent, [8] related logarithms to the quadrature of the hyperbola, by pointing out that the area A(t) under the hyperbola from x = 1 to x = t satisfies [9]

  6. Contributions of Leonhard Euler to mathematics - Wikipedia

    en.wikipedia.org/wiki/Contributions_of_Leonhard...

    Euler's great interest in number theory can be traced to the influence of his friend in the St. Peterburg Academy, Christian Goldbach. A lot of his early work on number theory was based on the works of Pierre de Fermat, and developed some of Fermat's ideas. One focus of Euler's work was to link the nature of prime distribution with ideas in ...

  7. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.

  8. Euler numbers - Wikipedia

    en.wikipedia.org/wiki/Euler_numbers

    The Euler numbers appear in the Taylor series expansions of the secant and hyperbolic secant functions. The latter is the function in the definition. The latter is the function in the definition. They also occur in combinatorics , specifically when counting the number of alternating permutations of a set with an even number of elements.

  9. Introductio in analysin infinitorum - Wikipedia

    en.wikipedia.org/wiki/Introductio_in_analysin...

    Euler's number e corresponds to shaded area equal to 1, introduced in chapter VII. Introductio in analysin infinitorum (Latin: [1] Introduction to the Analysis of the Infinite) is a two-volume work by Leonhard Euler which lays the foundations of mathematical analysis.