Search results
Results from the WOW.Com Content Network
The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound. In 1918 [1] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term. [2]
where is the lattice energy (i.e., the molar internal energy change), is the lattice enthalpy, and the change of molar volume due to the formation of the lattice. Since the molar volume of the solid is much smaller than that of the gases, Δ V m < 0 {\displaystyle \Delta V_{m}<0} .
The Born–Mayer equation is an equation that is used to calculate the lattice energy of a crystalline ionic compound. It is a refinement of the Born–Landé equation by using an improved repulsion term.
The Madelung constant is also a useful quantity in describing the lattice energy of organic salts. Izgorodina and coworkers have described a generalised method (called the EUGEN method) of calculating the Madelung constant for any crystal structure. [13]
The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%. Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known.
Born–Haber cycles are used primarily as a means of calculating lattice energy (or more precisely enthalpy [note 1]), which cannot otherwise be measured directly. The lattice enthalpy is the enthalpy change involved in the formation of an ionic compound from gaseous ions (an exothermic process ), or sometimes defined as the energy to break the ...
Unit cell definition using parallelepiped with lengths a, b, c and angles between the sides given by α, β, γ [1]. A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal.
where E V is the maximum energy of the valence band. Practically, this effective mass tends to vary greatly between absolute zero and room temperature in many materials (e.g., a factor of two in silicon), as there are multiple valence bands with distinct and significantly non-parabolic character, all peaking near the same energy. [8]