Search results
Results from the WOW.Com Content Network
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [ 2 ] or the conventional atomic weight.
The molar mass constant, usually denoted by M u, is a physical constant defined as one twelfth of the molar mass of carbon-12: M u = M(12 C)/12. [1] The molar mass of an element or compound is its relative atomic mass (atomic weight) or relative molecular mass (molecular weight or formula weight) multiplied by the molar mass constant.
A closely related property of a substance is the heat capacity per mole of atoms, or atom-molar heat capacity, in which the heat capacity of the sample is divided by the number of moles of atoms instead of moles of molecules. So, for example, the atom-molar heat capacity of water is 1/3 of its molar heat capacity, namely 25.3 J⋅K −1 ⋅mol ...
Sulfuric acid is a colorless oily liquid, and has a vapor pressure of <0.001 mmHg at 25 °C and 1 mmHg at 145.8 °C, [16] and 98% sulfuric acid has a vapor pressure of <1 mmHg at 40 °C. [ 17 ] In the solid state, sulfuric acid is a molecular solid that forms monoclinic crystals with nearly trigonal lattice parameters.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
potassium permanganate has a molar mass of 158.034(1) g mol −1, and reacts with five moles of electrons per mole of potassium permanganate, so its equivalent weight is 158.034(1) g mol −1 /5 eq mol −1 = 31.6068(3) g eq −1. Historically, the equivalent weights of the elements were often determined by studying their reactions with oxygen.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!