Search results
Results from the WOW.Com Content Network
The values of sine and cosine of 30 and 60 degrees are derived by analysis of the equilateral triangle. In an equilateral triangle, the 3 angles are equal and sum to 180°, therefore each corner angle is 60°. Bisecting one corner, the special right triangle with angles 30-60-90 is obtained.
However, when it is inconvenient to use base-60 for minutes and seconds, positions are frequently expressed as decimal fractional degrees to an equal amount of precision. Degrees given to three decimal places ( 1 / 1000 of a degree) have about 1 / 4 the precision of degrees-minutes-seconds ( 1 / 3600 of a degree) and ...
Solid angles can also be measured in square degrees (1 sr = (180/ π) 2 square degrees), in square arc-minutes and square arc-seconds, or in fractions of the sphere (1 sr = 1 / 4 π fractional area), also known as spat (1 sp = 4 π sr). In spherical coordinates there is a formula for the differential,
For this purpose scope mounts are sold with varying degrees of tilt, but some common values are: 3 mrad, which equals 3 m at 1000 m (or 0.3 m at 100 m) 6 mrad, which equals 6 m at 1000 m (or 0.6 m at 100 m) 9 mrad, which equals 9 m at 1000 m (or 0.9 m at 100 m) With a tilted mount the maximum usable scope elevation can be found by:
Trigonometry (from Ancient Greek τρίγωνον (trígōnon) 'triangle' and μέτρον (métron) 'measure') [1] is a branch of mathematics concerned with relationships between angles and side lengths of triangles.
Angular sizes measured in degrees are useful for larger patches of sky. (For example, the three stars of the Belt cover about 4.5° of angular size.) However, much finer units are needed to measure the angular sizes of galaxies, nebulae, or other objects of the night sky. Degrees, therefore, are subdivided as follows: 360 degrees (°) in a full ...
The correct branch of the multiple valued function arctan x to use is the one that makes ν a continuous function of E(M) starting from ν E=0 = 0. Thus for 0 ≤ E < π use arctan x = arctan x, and for π < E ≤ 2π use arctan x = arctan x + π. At the specific value E = π for which the argument of tan is infinite, use ν = E.
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle.Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola.