Search results
Results from the WOW.Com Content Network
In algebra, a monic polynomial is a non-zero univariate polynomial (that is, a polynomial in a single variable) in which the leading coefficient (the nonzero coefficient of highest degree) is equal to 1.
In a similar way, If f and g are two polynomial arithmetic functions, one defines f * g, the Dirichlet convolution of f and g, by () = () = = () where the sum extends over all monic divisors d of m, or equivalently over all pairs (a, b) of monic polynomials whose product is m.
Applied to a monic polynomial, these formulae express the coefficients in terms of the power sums of the roots: replace each e i by a i and each p k by s k. Expressing complete homogeneous symmetric polynomials in terms of power sums
The Bernstein–Sato polynomial is the monic polynomial of smallest degree amongst such polynomials (). Its existence can be shown using the notion of holonomic D-modules . Kashiwara (1976) proved that all roots of the Bernstein–Sato polynomial are negative rational numbers .
Bahasa Indonesia; Italiano; עברית ... the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix ... which is a monic ...
Quadratic irrational numbers, irrational solutions of a quadratic polynomial ax 2 + bx + c with integer coefficients a, b, and c, are algebraic numbers. If the quadratic polynomial is monic (a = 1), the roots are further qualified as quadratic integers. Gaussian integers, complex numbers a + bi for which both a and b are integers, are also ...
The polynomial factors into linear factors over a field of order q. More precisely, this polynomial is the product of all monic polynomials of degree one over a field of order q. This implies that, if q = p n then X q − X is the product of all monic irreducible polynomials over GF(p), whose degree divides n.
Graph of the polynomial function x 4 + x 3 – x 2 – 7x/4 – 1/2 (in green) together with the graph of its resolvent cubic R 4 (y) (in red). The roots of both polynomials are visible too. In algebra, a resolvent cubic is one of several distinct, although related, cubic polynomials defined from a monic polynomial of degree four: