enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    DNA is read by DNA polymerase in the 3′ to 5′ direction, meaning the new strand is synthesized in the 5' to 3' direction. Since the leading and lagging strand templates are oriented in opposite directions at the replication fork, a major issue is how to achieve synthesis of new lagging strand DNA, whose direction of synthesis is opposite to ...

  3. Circular chromosome - Wikipedia

    en.wikipedia.org/wiki/Circular_chromosome

    Leading strand synthesis then proceeds continuously, while the DNA is concurrently unwound at the replication fork. In contrast, lagging strand synthesis is accomplished in short Okazaki fragments. First, an RNA primer is synthesized by primase, and, like that in leading strand synthesis, DNA Pol III binds to the RNA primer and adds ...

  4. Eukaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_DNA_replication

    After around 20 nucleotides, elongation is taken over by Pol ε on the leading strand and Pol δ on the lagging strand. [103] Polymerase δ (Pol δ): Highly processive and has proofreading, 3'->5' exonuclease activity. In vivo, it is the main polymerase involved in both lagging strand and leading strand synthesis. [104]

  5. Primer binding site - Wikipedia

    en.wikipedia.org/wiki/Primer_binding_site

    The lagging strand moves away from the replication fork in the 3' to 5' direction and consists of small fragments called Okazaki fragments. DNA polymerase makes the lagging strand by using a new RNA primer for each Okazaki fragment it encounters. Overall, the leading strand only uses one RNA primer, while the lagging strand uses a new RNA ...

  6. Replisome - Wikipedia

    en.wikipedia.org/wiki/Replisome

    This means that nucleotide synthesis on the leading strand naturally occurs in the 5' to 3' direction. However, the lagging strand runs in the opposite direction and this presents quite a challenge since no known replicative polymerases can synthesise DNA in the 3' to 5' direction.

  7. Antiparallel (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Antiparallel_(biochemistry)

    In DNA, the 5' carbon is located at the top of the leading strand, and the 3' carbon is located at the lower section of the lagging strand.The nucleic acid sequences are complementary and parallel, but they go in opposite directions, hence the antiparallel designation. [3]

  8. Prokaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Prokaryotic_DNA_replication

    The nicked strand, or T-strand, is then unwound from the unbroken strand and transferred to the recipient cell in a 5'-terminus to 3'-terminus direction. The remaining strand is replicated either independent of conjugative action (vegetative replication beginning at the oriV) or in concert with conjugation (conjugative replication similar to ...

  9. DNA polymerase I - Wikipedia

    en.wikipedia.org/wiki/DNA_polymerase_I

    In DNA replication, the leading DNA strand is continuously extended in the direction of replication fork movement, whereas the DNA lagging strand runs discontinuously in the opposite direction as Okazaki fragments. [7] DNA polymerases also cannot initiate DNA chains so they must be initiated by short RNA or DNA segments known as primers. [5]