Search results
Results from the WOW.Com Content Network
Thermal or compositional fluid-dynamical plumes produced in that way were presented as models for the much larger postulated mantle plumes. Based on these experiments, mantle plumes are now postulated to comprise two parts: a long thin conduit connecting the top of the plume to its base, and a bulbous head that expands in size as the plume rises.
Mantle convection is the very slow creep of Earth's solid silicate mantle as convection currents carry heat from the interior to the planet's surface. [2] [3] Mantle convection causes tectonic plates to move around the Earth's surface. [4] The Earth's lithosphere rides atop the asthenosphere, and the two form the components of the upper mantle ...
The production of magma is accomplished in multiple ways: 1) subduction of oceanic crust, 2) creation of a hot spot from a mantle plume, and 3) divergence of oceanic or continental plates. The subduction of oceanic crust produces a magmatic melt usually at great depth. Yellowstone National Park is a hot spot located within the center of a ...
The volcanism often attributed to deep mantle plumes is alternatively explained by passive extension of the crust, permitting magma to leak to the surface: the plate hypothesis. [24] The convection of the Earth's mantle is a chaotic process (in the sense of fluid dynamics), which is
Mantle plumes were first proposed by J. Tuzo Wilson in 1963 [4] [non-primary source needed] and further developed by W. Jason Morgan in 1971. A mantle plume is posited to exist where hot rock nucleates [clarification needed] at the core-mantle boundary and rises through the Earth's mantle becoming a diapir in the Earth's crust. [5]
The figure is a schematic diagram depicting a subduction zone. The subduction slab on the right enters the mantle with a varying temperature gradient while importing water in a downward motion. A model of the subducting Farallon slab under North America. In geology, the slab is a significant constituent of subduction zones. [1]
The asthenosphere is the ductile region of the upper mantle. Mantle processes which operate across mountain belts include those related to subduction (e.g., slab break-off, flat-slab subduction, subduction of a triple junction). Volcanism is driven by mantle processes such as partial melting and thermal convection currents.
The convective circulation drives up-wellings and down-wellings in Earth's mantle that are reflected in local surface levels. Hot mantle materials rising up in a plume can spread out radially beneath the tectonic plate causing regions of uplift. [13] These ascending plumes play an important role in LIP formation.