enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Degree of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_polynomial

    Thus deg(f⋅g) = 0 which is not greater than the degrees of f and g (which each had degree 1). Since the norm function is not defined for the zero element of the ring, we consider the degree of the polynomial f(x) = 0 to also be undefined so that it follows the rules of a norm in a Euclidean domain.

  3. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    With modern computers and programs, deciding whether a polynomial is solvable by radicals can be done for polynomials of degree greater than 100. [6] Computing the solutions in radicals of solvable polynomials requires huge computations. Even for the degree five, the expression of the solutions is so huge that it has no practical interest.

  4. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    If a and b are rational numbers, the equation x 5 + ax + b = 0 is solvable by radicals if either its left-hand side is a product of polynomials of degree less than 5 with rational coefficients or there exist two rational numbers ℓ and m such that

  5. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    Unlike other constant polynomials, its degree is not zero. Rather, the degree of the zero polynomial is either left explicitly undefined, or defined as negative (either −1 or −∞). [10] The zero polynomial is also unique in that it is the only polynomial in one indeterminate that has an infinite number of roots.

  6. Minimal polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_(field...

    The minimal polynomial f of α is unique.. To prove this, suppose that f and g are monic polynomials in J α of minimal degree n > 0. We have that r := f−g ∈ J α (because the latter is closed under addition/subtraction) and that m := deg(r) < n (because the polynomials are monic of the same degree).

  7. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    The largest zero of this polynomial which corresponds to the second largest zero of the original polynomial is found at 3 and is circled in red. The degree 5 polynomial is now divided by () to obtain = + + which is shown in yellow. The zero for this polynomial is found at 2 again using Newton's method and is circled in yellow.

  8. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  9. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    If the degree of the GCD is greater than i, then Bézout's identity shows that every non zero polynomial in the image of has a degree larger than i. This implies that S i = 0 . If, on the other hand, the degree of the GCD is i , then Bézout's identity again allows proving that the multiples of the GCD that have a degree lower than m + n − i ...