Search results
Results from the WOW.Com Content Network
To convert a color from a colorspace based on a typical gamma-compressed (nonlinear) RGB color model to a grayscale representation of its luminance, the gamma compression function must first be removed via gamma expansion (linearization) to transform the image to a linear RGB colorspace, so that the appropriate weighted sum can be applied to ...
Converting from sRGB requires first converting from sRGB to CIE XYZ with a Standard Illuminant D65. As the last step of this conversion is a linear map from linear RGB to CIE XYZ, the reference implementation directly employs the multiplied matrix representing the composition of the two linear maps: [ 1 ]
A popular way to make a color space like RGB into an absolute color is to define an ICC profile, which contains the attributes of the RGB. This is not the only way to express an absolute color, but it is the standard in many industries. RGB colors defined by widely accepted profiles include sRGB and Adobe RGB.
The 3-3-2 bit RGB use 3 bits for each of the red and green color components, and 2 bits for the blue component, due to the human eyes having lesser sensitivity to blue. This results in an 8×8×4 = 256-color palette as follows: This palette is used by: The MSX2 series of personal computers; Palette 4 of the IBM PGC; Extended Graphics Array (XGA)
In the RGB model, hues are represented by specifying one color as full intensity (255), a second color with a variable intensity, and the third color with no intensity (0). The following provides some examples using red as the full-intensity and green as the partial-intensity colors; blue is always zero:
RGB is a device-dependent color model: different devices detect or reproduce a given RGB value differently, since the color elements (such as phosphors or dyes) and their response to the individual red, green, and blue levels vary from manufacturer to manufacturer, or even in the same device over time.
The eye is more sensitive to changes in the orange-blue (I) range than in the purple-green range (Q)—therefore less bandwidth is required for Q than for I. Broadcast NTSC limits I to 1.3 MHz and Q to 0.4 MHz. I and Q are frequency interleaved into the 4 MHz Y signal, which keeps the bandwidth of the overall signal down to 4.2 MHz.
The RGB color model is an additive color model [1] in which the red, green, and blue primary colors of light are added together in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary colors , red, green, and blue.