Search results
Results from the WOW.Com Content Network
Sound pressure or acoustic pressure is the local pressure deviation from the ambient (average or equilibrium) atmospheric pressure, caused by a sound wave. In air, sound pressure can be measured using a microphone, and in water with a hydrophone. The SI unit of sound pressure is the pascal (Pa). [1]
Acoustic waves are a type of energy propagation that travels through a medium, such as air, water, or solid objects, by means of adiabatic compression and expansion. Key quantities describing these waves include acoustic pressure, particle velocity, particle displacement, and acoustic intensity.
Example of airborne and structure-borne transmission of sound, where Lp is sound pressure level, A is attenuation, P is acoustical pressure, S is the area of the wall [m²], and τ is the transmission coefficient. Acoustic transmission is the transmission of sounds through and between materials, including air, wall, and musical instruments.
In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the ...
Sound power or acoustic power is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time. [1] It is defined [ 2 ] as "through a surface, the product of the sound pressure , and the component of the particle velocity , at a point on the surface in the direction normal to the surface, integrated over that ...
Only acoustic waves that have frequencies lying between about 20 Hz and 20 kHz, the audio frequency range, elicit an auditory percept in humans. In air at atmospheric pressure, these represent sound waves with wavelengths of 17 meters (56 ft) to 1.7 centimeters (0.67 in).
Specific acoustic impedance z is an intensive property of a particular medium (e.g., the z of air or water can be specified); on the other hand, acoustic impedance Z is an extensive property of a particular medium and geometry (e.g., the Z of a particular duct filled with air can be specified).
In fluids such as air and water, sound waves propagate as disturbances in the ambient pressure level. While this disturbance is usually small, it is still noticeable to the human ear. The smallest sound that a person can hear, known as the threshold of hearing , is nine orders of magnitude smaller than the ambient pressure.