Ad
related to: non recurring decimal exampleseducation.com has been visited by 100K+ users in the past month
Education.com is great and resourceful - MrsChettyLife
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Activities & Crafts
Search results
Results from the WOW.Com Content Network
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".
Although all decimal fractions are fractions, and thus it is possible to use a rational data type to represent it exactly, it may be more convenient in many situations to consider only non-repeating decimal fractions (fractions whose denominator is a power of ten). For example, fractional units of currency worldwide are mostly based on a ...
In the case of irrational numbers, the decimal expansion does not terminate, nor end with a repeating sequence. For example, the decimal representation of π starts with 3.14159, but no finite number of digits can represent π exactly, nor does it repeat. Conversely, a decimal expansion that terminates or repeats must be a rational number.
A repeating decimal is an infinite decimal that, after some place, repeats indefinitely the same sequence of digits (e.g., 5.123144144144144... = 5.123 144). [4] An infinite decimal represents a rational number, the quotient of two integers, if and only if it is a repeating decimal or has a finite number of non-zero digits.
An irrational number stays aperiodic (with an infinite number of non-repeating digits) in all integral bases. Thus, for example in base 2, π = 3.1415926... 10 can be written as the aperiodic 11.001001000011111... 2. Putting overscores, n, or dots, ṅ, above the common digits is a convention used to represent repeating rational expansions. Thus:
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
This is the repeating decimal notation (to which there does not exist a single universally accepted notation or phrasing). For base 10 it is called a repeating decimal or recurring decimal. An irrational number has an infinite non-repeating representation in all integer bases.
Ad
related to: non recurring decimal exampleseducation.com has been visited by 100K+ users in the past month
Education.com is great and resourceful - MrsChettyLife