enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Equivalently, a convex quadrilateral is cyclic if and only if each exterior angle is equal to the opposite interior angle. In 1836 Duncan Gregory generalized this result as follows: Given any convex cyclic 2 n -gon, then the two sums of alternate interior angles are each equal to ( n -1) π {\displaystyle \pi } . [ 4 ]

  3. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's theorem is a relation among these lengths in a cyclic quadrilateral. = + In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle).

  4. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    The cyclic quadrilaterals may equivalently defined as the quadrilaterals in which two opposite angles are supplementary (they add to 180°); if one pair is supplementary the other is as well. [9] Therefore, the right kites are the kites with two opposite supplementary angles, for either of the two opposite pairs of angles.

  5. Right kite - Wikipedia

    en.wikipedia.org/wiki/Right_kite

    In Euclidean geometry, a right kite is a kite (a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other) that can be inscribed in a circle. [1] That is, it is a kite with a circumcircle (i.e., a cyclic kite). Thus the right kite is a convex quadrilateral and has two opposite right ...

  6. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    A convex quadrilateral is cyclic if and only if opposite angles sum to 180°. Right kite: a kite with two opposite right angles. It is a type of cyclic quadrilateral. Harmonic quadrilateral: a cyclic quadrilateral such that the products of the lengths of the opposing sides are equal. Bicentric quadrilateral: it is both tangential and cyclic.

  7. Lexell's theorem - Wikipedia

    en.wikipedia.org/wiki/Lexell's_theorem

    Jakob Steiner (1827) wrote a proof in similar style to Lexell's, also using Girard's theorem, but demonstrating the angle invariants in the triangle by constructing a cyclic quadrilateral inside the Lexell circle, using the property that pairs of opposite angles in a spherical cyclic quadrilateral have the same sum.

  8. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    It is a property of cyclic quadrilaterals (and ultimately of inscribed angles) that opposite angles of a quadrilateral sum to 180°. Consequently, in the case of an inscribed quadrilateral, θ is 90°, whence the term ⁡ = ⁡ = =, giving the basic form of Brahmagupta's formula.

  9. Brahmagupta theorem - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta_theorem

    In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]