enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kurtosis - Wikipedia

    en.wikipedia.org/wiki/Kurtosis

    Excess kurtosis, typically compared to a value of 0, characterizes the “tailedness” of a distribution. A univariate normal distribution has an excess kurtosis of 0. Negative excess kurtosis indicates a platykurtic distribution, which doesn’t necessarily have a flat top but produces fewer or less extreme outliers than the normal distribution.

  3. Normal probability plot - Wikipedia

    en.wikipedia.org/wiki/Normal_probability_plot

    The normal probability plot is a graphical technique to identify substantive departures from normality.This includes identifying outliers, skewness, kurtosis, a need for transformations, and mixtures.

  4. Kurtosis risk - Wikipedia

    en.wikipedia.org/wiki/Kurtosis_risk

    Kurtosis risk applies to any kurtosis-related quantitative model that assumes the normal distribution for certain of its independent variables when the latter may in fact have kurtosis much greater than does the normal distribution. Kurtosis risk is commonly referred to as "fat tail" risk. The "fat tail" metaphor explicitly describes the ...

  5. Glossary of probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_probability...

    There are different ways of quantifying, estimating, and interpreting kurtosis, but a common interpretation is that kurtosis represents the degree to which the shape of the distribution is influenced by infrequent extreme observations (outliers); in this case, higher kurtosis means more of the variance is due to infrequent extreme deviations ...

  6. Jarque–Bera test - Wikipedia

    en.wikipedia.org/wiki/Jarque–Bera_test

    In statistics, the Jarque–Bera test is a goodness-of-fit test of whether sample data have the skewness and kurtosis matching a normal distribution. The test is named after Carlos Jarque and Anil K. Bera. The test statistic is always nonnegative. If it is far from zero, it signals the data do not have a normal distribution.

  7. Beta distribution - Wikipedia

    en.wikipedia.org/wiki/Beta_distribution

    The plot of excess kurtosis as a function of the variance and the mean shows that the minimum value of the excess kurtosis (−2, which is the minimum possible value for excess kurtosis for any distribution) is intimately coupled with the maximum value of variance (1/4) and the symmetry condition: the mean occurring at the midpoint (μ = 1/2).

  8. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    The Jarque–Bera test is itself derived from skewness and kurtosis estimates. Mardia's multivariate skewness and kurtosis tests generalize the moment tests to the multivariate case. [7] Other early test statistics include the ratio of the mean absolute deviation to the standard deviation and of the range to the standard deviation. [8]

  9. Geometric distribution - Wikipedia

    en.wikipedia.org/wiki/Geometric_distribution

    The kurtosis of the geometric distribution is +. [ 6 ] : 115 The excess kurtosis of a distribution is the difference between its kurtosis and the kurtosis of a normal distribution , 3 {\displaystyle 3} .