enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unit circle - Wikipedia

    en.wikipedia.org/wiki/Unit_circle

    Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.

  3. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    This observation can be used to compute the area of an arbitrary ellipse from the area of a unit circle. Consider the unit circle circumscribed by a square of side length 2. The transformation sends the circle to an ellipse by stretching or shrinking the horizontal and vertical diameters to the major and minor axes of the ellipse.

  4. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter.

  5. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    The triangle of largest area of all those inscribed in a given circle is equilateral; and the triangle of smallest area of all those circumscribed around a given circle is equilateral. [ 36 ] The ratio of the area of the incircle to the area of an equilateral triangle, π 3 3 {\displaystyle {\frac {\pi }{3{\sqrt {3}}}}} , is larger than that of ...

  6. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    All of the trigonometric functions of the angle θ (theta) can be constructed geometrically in terms of a unit circle centered at O. Sine function on unit circle (top) and its graph (bottom) In this illustration, the six trigonometric functions of an arbitrary angle θ are represented as Cartesian coordinates of points related to the unit circle.

  7. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  8. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that

  9. Liu Hui's π algorithm - Wikipedia

    en.wikipedia.org/wiki/Liu_Hui's_π_algorithm

    Liu Hui's method of calculating the area of a circle. Liu Hui's π algorithm was invented by Liu Hui (fl. 3rd century), a mathematician of the state of Cao Wei.Before his time, the ratio of the circumference of a circle to its diameter was often taken experimentally as three in China, while Zhang Heng (78–139) rendered it as 3.1724 (from the proportion of the celestial circle to the diameter ...