enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    Laplace–Beltrami operator, generalization to submanifolds in Euclidean space and Riemannian and pseudo-Riemannian manifold. The Laplacian in differential geometry. The discrete Laplace operator is a finite-difference analog of the continuous Laplacian, defined on graphs and grids.

  3. Laplace operators in differential geometry - Wikipedia

    en.wikipedia.org/wiki/Laplace_operators_in...

    The Hodge Laplacian, also known as the Laplace–de Rham operator, is a differential operator acting on differential forms. (Abstractly, it is a second order operator on each exterior power of the cotangent bundle.) This operator is defined on any manifold equipped with a Riemannian- or pseudo-Riemannian metric.

  4. Laplace–Beltrami operator - Wikipedia

    en.wikipedia.org/wiki/Laplace–Beltrami_operator

    When computing the Laplace–de Rham operator on a scalar function f, we have δf = 0, so that =. Up to an overall sign, the Laplace–de Rham operator is equivalent to the previous definition of the Laplace–Beltrami operator when acting on a scalar function; see the proof for details.

  5. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Gradient, divergence, Laplace–Beltrami operator [ edit ] The gradient of a function ϕ {\displaystyle \phi } is obtained by raising the index of the differential ∂ i ϕ d x i {\displaystyle \partial _{i}\phi dx^{i}} , whose components are given by:

  6. Spectral geometry - Wikipedia

    en.wikipedia.org/wiki/Spectral_geometry

    Spectral geometry is a field in mathematics which concerns relationships between geometric structures of manifolds and spectra of canonically defined differential operators. The case of the Laplace–Beltrami operator on a closed Riemannian manifold has been most intensively studied, although other Laplace operators in differential geometry ...

  7. Greek letters used in mathematics, science, and engineering

    en.wikipedia.org/wiki/Greek_letters_used_in...

    a difference operator; a symmetric difference; the Laplace operator; giving heat in a chemical reaction; the angle that subtends the arc of a circular curve in surveying; the maximum degree of any vertex in a given graph; sensitivity to price in mathematical finance; the discriminant of a polynomial (in a quadratic polynomial determines the ...

  8. Spectral shape analysis - Wikipedia

    en.wikipedia.org/wiki/Spectral_shape_analysis

    Spectral shape analysis relies on the spectrum (eigenvalues and/or eigenfunctions) of the Laplace–Beltrami operator to compare and analyze geometric shapes. Since the spectrum of the Laplace–Beltrami operator is invariant under isometries, it is well suited for the analysis or retrieval of non-rigid shapes, i.e. bendable objects such as humans, animals, plants, etc.

  9. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.