Ads
related to: lie group table settingsbedbathandbeyond.com has been visited by 100K+ users in the past month
Search results
Results from the WOW.Com Content Network
This article gives a table of some common Lie groups and their associated Lie algebras.. The following are noted: the topological properties of the group (dimension; connectedness; compactness; the nature of the fundamental group; and whether or not they are simply connected) as well as on their algebraic properties (abelian; simple; semisimple).
A real Lie group is a group that is also a finite-dimensional real smooth manifold, in which the group operations of multiplication and inversion are smooth maps. Smoothness of the group multiplication : (,) = means that μ is a smooth mapping of the product manifold G × G into G. The two requirements can be combined to the single requirement ...
See Table of Lie groups for a list. General linear group, special linear group. SL 2 (R) SL 2 (C) Unitary group, special unitary group. SU(2) SU(3) Orthogonal group, special orthogonal group. Rotation group SO(3) SO(8) Generalized orthogonal group, generalized special orthogonal group. The special unitary group SU(1,1) is the unit sphere in the ...
Once these are known, the ones with non-trivial center are easy to list as follows. Any simple Lie group with trivial center has a universal cover whose center is the fundamental group of the simple Lie group. The corresponding simple Lie groups with non-trivial center can be obtained as quotients of this universal cover by a subgroup of the ...
Suppose G is a closed subgroup of GL(n;C), and thus a Lie group, by the closed subgroups theorem.Then the Lie algebra of G may be computed as [2] [3] = {(;)}. For example, one can use the criterion to establish the correspondence for classical compact groups (cf. the table in "compact Lie groups" below.)
One setting in which the Lie algebra representation is well understood is that of semisimple (or reductive) Lie groups, where the associated Lie algebra representation forms a (g,K)-module. Examples of unitary representations arise in quantum mechanics and quantum field theory, but also in Fourier analysis as shown in the following example.
The outer automorphisms of the group Out(G) are essentially the diagram automorphisms of the Dynkin diagram, while the group cohomology is computed in Hämmerli, Matthey & Suter 2004 and is a finite elementary abelian 2-group ((/)); for simple Lie groups it has order 1, 2, or 4. The 0th and 2nd group cohomology are also closely related to the ...
Let :, (,) be a (left) group action of a Lie group on a smooth manifold ; it is called a Lie group action (or smooth action) if the map is differentiable. Equivalently, a Lie group action of G {\displaystyle G} on M {\displaystyle M} consists of a Lie group homomorphism G → D i f f ( M ) {\displaystyle G\to \mathrm {Diff} (M)} .
Ads
related to: lie group table settingsbedbathandbeyond.com has been visited by 100K+ users in the past month