Search results
Results from the WOW.Com Content Network
Manganese dioxide also catalyses the decomposition of hydrogen peroxide to oxygen and water: 2 H 2 O 2 → 2 H 2 O + O 2. Manganese dioxide decomposes above about 530 °C to manganese(III) oxide and oxygen. At temperatures close to 1000 °C, the mixed-valence compound Mn 3 O 4 forms. Higher temperatures give MnO, which is reduced only with ...
Manganese(II,III) oxide is the chemical compound with formula Mn 3 O 4. Manganese is present in two oxidation states +2 and +3 and the formula is sometimes written as MnO · Mn 2 O 3 . Mn 3 O 4 is found in nature as the mineral hausmannite .
A variety of compositions are known, such as "hopcalite II" that is approximately 60% manganese dioxide and 40% copper oxide (the MnO 2 : CuO molar ratio is 1.375) [2] and "hopcalite I" that is a mixture of 50% MnO, 30% CuO, 15% Co 2 O 3, and 5% Ag 2 O. [2] [3] Hopcalite has the properties of a porous mass and resembles activated carbon in its ...
Manganese(III) oxide is formed by the redox reaction in an alkaline cell: 2 MnO 2 + Zn → Mn 2 O 3 + ZnO [citation needed] Manganese(III) oxide Mn 2 O 3 must not be confused with MnOOH manganese(III) oxyhydroxide. Contrary to Mn 2 O 3, MnOOH is a compound that decomposes at about 300 °C to form MnO 2.
An alternative route, mostly for demonstration purposes, is the oxalate method, which also applicable to the synthesis of ferrous oxide and stannous oxide. Upon heating in an oxygen-free atmosphere (usually CO 2), manganese(II) oxalate decomposes into MnO: [9] MnC 2 O 4 ·2H 2 O → MnO + CO 2 + CO + 2 H 2 O
Manganese may also form mixed oxides with other metals : Bixbyite, (Fe III,Mn III) 2 O 3, a manganese(III) iron(III) oxide mineral; Jacobsite, Mn II Fe III 2 O 4, a manganese(II) iron(III) oxide mineral; Columbite, (Fe II,Mn II)Nb 2 O 6, a niobate of iron(II) and manganese(II) Tantalite, (Fe II,Mn II)Ta 2 O 6, a tantalum(V) mineral group close ...
Manganese(IV) oxide was used in the original type of dry cell battery as an electron acceptor from zinc, and is the blackish material in carbon–zinc type flashlight cells. The manganese dioxide is reduced to the manganese oxide-hydroxide MnO(OH) during discharging, preventing the formation of hydrogen at the anode of the battery. [82]
Manganese(VII) oxide (manganese heptoxide) is an inorganic compound with the formula Mn 2 O 7 Manganese heptoxide is a volatile liquid with an oily consistency. It is a highly reactive and powerful oxidizer that reacts explosively with nearly any organic compound .