Search results
Results from the WOW.Com Content Network
The longest period neutron star pulsar, PSR J0901-4046, with a period of 75.9 seconds. The longest period pulsar, at 118.2 seconds, as well as one of the only known two white dwarf pulsars, AR Scorpii. [68] The first white dwarf pulsar AE Aquarii. [69] [70] The pulsar with the most stable period, PSR J0437−4715
PSR B1919+21 is a pulsar with a period of 1.3373 seconds [4] and a pulse width of 0.04 seconds. Discovered by Jocelyn Bell Burnell on 28 November 1967, it is the first discovered radio pulsar. [5]
The pulsar and its neutron star companion both follow elliptical orbits around their common center of mass. The period of the orbital motion is 7.75 hours, and the two neutron stars are believed to be nearly equal in mass, about 1.4 solar masses. Radio emissions have been detected from only one of the two neutron stars.
The formation scenarios have consequences for the planets' composition: A planet formed from supernova debris is likely rich in metals and radioactive isotopes [15] and may contain large quantities of water; [18] one formed through the break-up of a white dwarf would be carbon rich [15] and consist of large amounts of diamond; [19] an actual white dwarf fragment would be extremely dense. [15]
Neutron stars can be classified as pulsars if they are magnetized, if they rotate, and if they emit beams of electromagnetic radiation out of their magnetic poles. [4] They may include soft gamma repeaters (SGR) and radio-quiet neutron stars , as well as pulsars such as radio pulsars , recycled pulsars , low mass X-ray pulsars, and accretion ...
A star in this hypothetical state is called a "quark star" or more specifically a "strange star". The pulsar 3C58 has been suggested as a possible quark star. Most neutron stars are thought to hold a core of quark matter but this has proven difficult to determine observationally. [citation needed]
Neutron stars are usually observed to pulse radio waves and other electromagnetic radiation, and neutron stars observed with pulses are called pulsars. Pulsars' radiation is thought to be caused by particle acceleration near their magnetic poles , which need not be aligned with the rotational axis of the neutron star.
This was the first confirmation of the existence of gravitational radiation. There are now scores of binary pulsars known, and independent measurements have confirmed Taylor's results. Taylor has used this first binary pulsar to make high-precision tests of general relativity.