Search results
Results from the WOW.Com Content Network
The main catalyst for the development of chaos theory was the electronic computer. Much of the mathematics of chaos theory involves the repeated iteration of simple mathematical formulas, which would be impractical to do by hand. Electronic computers made these repeated calculations practical, while figures and images made it possible to ...
[23] [24] Visual patterns in nature find explanations in chaos theory, fractals, logarithmic spirals, topology and other mathematical patterns. For example, L-systems form convincing models of different patterns of tree growth. [19] The laws of physics apply the abstractions of mathematics to the real world, often as if it were perfect.
The paper is important because it is a "turning point" in Mandelbrot's early thinking on fractals. [14] It is an example of the linking of mathematical objects with natural forms that was a theme of much of his later work. A key property of some fractals is self-similarity; that is, at any scale the same general configuration appears. A ...
For example, if we have a set of random points on the real number line between 0 and 1, the correlation dimension will be ν = 1, while if they are distributed on say, a triangle embedded in three-dimensional space (or m-dimensional space), the correlation dimension will be ν = 2. This is what we would intuitively expect from a measure of ...
Fractal geometry lies within the mathematical branch of measure theory. One way that fractals are different from finite geometric figures is how they scale . Doubling the edge lengths of a filled polygon multiplies its area by four, which is two (the ratio of the new to the old side length) raised to the power of two (the conventional dimension ...
The unfinished Alan Moore 1990 comic book series Big Numbers used Mandelbrot's work on fractal geometry and chaos theory to underpin the structure of that work. Moore at one point was going to the name the comic book series The Mandelbrot Set .
The Beauty of Fractals is a 1986 book by Heinz-Otto Peitgen and Peter Richter which publicises the fields of complex dynamics, chaos theory and the concept of fractals. It is lavishly illustrated and as a mathematics book became an unusual success. The book includes a total of 184 illustrations, including 88 full-colour pictures of Julia sets.
An example of an Apollonian gasket. In mathematics, an Apollonian gasket or Apollonian net is a fractal generated by starting with a triple of circles, each tangent to the other two, and successively filling in more circles, each tangent to another three. It is named after Greek mathematician Apollonius of Perga. [1]