enow.com Web Search

  1. Ad

    related to: tangent circle practice problems
  2. education.com has been visited by 100K+ users in the past month

    Education.com is great and resourceful - MrsChettyLife

Search results

  1. Results from the WOW.Com Content Network
  2. Tangent circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_circles

    Malfatti's problem is to carve three cylinders from a triangular block of marble, using as much of the marble as possible. In 1803, Gian Francesco Malfatti conjectured that the solution would be obtained by inscribing three mutually tangent circles into the triangle (a problem that had previously been considered by Japanese mathematician Ajima Naonobu); these circles are now known as the ...

  3. Problem of Apollonius - Wikipedia

    en.wikipedia.org/wiki/Problem_of_Apollonius

    For every set of four mutually tangent circles, there is a second set of four mutually tangent circles that are tangent at the same six points. [2] [49] Descartes' theorem was rediscovered independently in 1826 by Jakob Steiner, [50] in 1842 by Philip Beecroft, [2] [49] and again in 1936 by Frederick Soddy. [51]

  4. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    A general Apollonius problem can be transformed into the simpler problem of circle tangent to one circle and two parallel lines (itself a special case of the LLC special case). To accomplish this, it suffices to scale two of the three given circles until they just touch, i.e., are tangent.

  5. Special cases of Apollonius' problem - Wikipedia

    en.wikipedia.org/wiki/Special_cases_of_Apollonius...

    In general, the same inversion transforms the given line L and given circle C into two new circles, c 1 and c 2. Thus, the problem becomes that of finding a solution line tangent to the two inverted circles, which was solved above. There are four such lines, and re-inversion transforms them into the four solution circles of the Apollonius problem.

  6. Circles of Apollonius - Wikipedia

    en.wikipedia.org/wiki/Circles_of_Apollonius

    Apollonius' problem is to construct circles that are simultaneously tangent to three specified circles. The solutions to this problem are sometimes called the circles of Apollonius . The Apollonian gasket —one of the first fractals ever described—is a set of mutually tangent circles, formed by solving Apollonius' problem iteratively.

  7. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    All tangent circles to the given circles can be found by varying line . Positions of the centers Circles tangent to two circles. If is the center and the radius of the circle, that is tangent to the given circles at the points ,, then:

  8. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have. In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this ...

  9. Ford circle - Wikipedia

    en.wikipedia.org/wiki/Ford_circle

    In mathematics, a Ford circle is a circle in the Euclidean plane, in a family of circles that are all tangent to the -axis at rational points. For each rational number p / q {\displaystyle p/q} , expressed in lowest terms, there is a Ford circle whose center is at the point ( p / q , 1 / ( 2 q 2 ) ) {\displaystyle (p/q,1/(2q^{2}))} and whose ...

  1. Ad

    related to: tangent circle practice problems