enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor product of modules - Wikipedia

    en.wikipedia.org/wiki/Tensor_product_of_modules

    In particular, any tensor product of R-modules can be constructed, if so desired, as a quotient of a tensor product of abelian groups by imposing the R-balanced product property. More category-theoretically, let σ be the given right action of R on M ; i.e., σ( m , r ) = m · r and τ the left action of R of N .

  3. Tor functor - Wikipedia

    en.wikipedia.org/wiki/Tor_functor

    0 (A, B) ≅ A ⊗ R B for any right R-module A and left R-module B. Tor R i (A, B) = 0 for all i > 0 if either A or B is flat (for example, free) as an R-module. In fact, one can compute Tor using a flat resolution of either A or B; this is more general than a projective (or free) resolution. [5] There are converses to the previous statement ...

  4. Derived tensor product - Wikipedia

    en.wikipedia.org/wiki/Derived_tensor_product

    In particular, () is the usual tensor product of modules M and N over R. Geometrically, the derived tensor product corresponds to the intersection product (of derived schemes ). Example : Let R be a simplicial commutative ring , Q ( R ) → R be a cofibrant replacement, and Ω Q ( R ) 1 {\displaystyle \Omega _{Q(R)}^{1}} be the module of ...

  5. Tensor product of algebras - Wikipedia

    en.wikipedia.org/wiki/Tensor_product_of_algebras

    The tensor product of commutative algebras is of frequent use in algebraic geometry. For affine schemes X , Y , Z with morphisms from X and Z to Y , so X = Spec( A ), Y = Spec( R ), and Z = Spec( B ) for some commutative rings A , R , B , the fiber product scheme is the affine scheme corresponding to the tensor product of algebras:

  6. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.

  7. Hochschild homology - Wikipedia

    en.wikipedia.org/wiki/Hochschild_homology

    Let k be a field, A an associative k-algebra, and M an A-bimodule.The enveloping algebra of A is the tensor product = of A with its opposite algebra.Bimodules over A are essentially the same as modules over the enveloping algebra of A, so in particular A and M can be considered as A e-modules.

  8. Bimodule - Wikipedia

    en.wikipedia.org/wiki/Bimodule

    In this interpretation, the category End(R) = Bimod(R, R) is exactly the monoidal category of R-R-bimodules with the usual tensor product over R the tensor product of the category. In particular, if R is a commutative ring, every left or right R-module is canonically an R-R-bimodule, which gives a monoidal embedding of the category R-Mod into ...

  9. Universal coefficient theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_coefficient_theorem

    For example it is common to take A to be Z/2Z, so that coefficients are modulo 2. This becomes straightforward in the absence of 2- torsion in the homology. Quite generally, the result indicates the relationship that holds between the Betti numbers b i of X and the Betti numbers b i , F with coefficients in a field F .