Search results
Results from the WOW.Com Content Network
The product-to-sum identities [28] or prosthaphaeresis formulae can be proven by expanding their right-hand sides using the angle addition theorems. Historically, the first four of these were known as Werner's formulas, after Johannes Werner who used them for astronomical calculations. [29]
Sum and difference: Find the sum and difference of the two angles. Average the cosines : Find the cosines of the sum and difference angles using a cosine table and average them, giving (according to the second formula above) the product cos α cos β {\displaystyle \cos \alpha \cos \beta } .
Illustration of the sum formula. Draw a horizontal line (the x -axis); mark an origin O. Draw a line from O at an angle α {\displaystyle \alpha } above the horizontal line and a second line at an angle β {\displaystyle \beta } above that; the angle between the second line and the x -axis is α + β {\displaystyle \alpha +\beta } .
The product is one type of algebra for random variables: Related to the product distribution are the ratio distribution, sum distribution (see List of convolutions of probability distributions) and difference distribution. More generally, one may talk of combinations of sums, differences, products and ratios.
In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).
The product of the members of a finite arithmetic progression with an initial element a 1, common differences d, and n elements in total is determined in a closed expression a 1 a 2 a 3 ⋯ a n = a 1 ( a 1 + d ) ( a 1 + 2 d ) . . .
The sum and difference formulas allow expanding the sine, the cosine, and the tangent of a sum or a difference of two angles in terms of sines and cosines and tangents of the angles themselves. These can be derived geometrically, using arguments that date to Ptolemy. One can also produce them algebraically using Euler's formula. Sum
By using the product rule, one gets the derivative ′ = + (since the derivative of is , and the derivative of the sine function is the cosine function). One special case of the product rule is the constant multiple rule, which states: if c is a number, and () is a differentiable function, then () is also differentiable, and its derivative is