enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Randomized Hough transform - Wikipedia

    en.wikipedia.org/wiki/Randomized_Hough_Transform

    Hough transforms are techniques for object detection, a critical step in many implementations of computer vision, or data mining from images. Specifically, the Randomized Hough transform is a probabilistic variant to the classical Hough transform, and is commonly used to detect curves (straight line, circle, ellipse, etc.) [1] The basic idea of Hough transform (HT) is to implement a voting ...

  3. Generalised Hough transform - Wikipedia

    en.wikipedia.org/wiki/Generalised_Hough_transform

    The generalized Hough transform (GHT), introduced by Dana H. Ballard in 1981, is the modification of the Hough transform using the principle of template matching. [1] The Hough transform was initially developed to detect analytically defined shapes (e.g., line, circle, ellipse etc.). In these cases, we have knowledge of the shape and aim to ...

  4. Hough transform - Wikipedia

    en.wikipedia.org/wiki/Hough_transform

    The Hough transform is a feature extraction technique used in image analysis, computer vision, pattern recognition, and digital image processing. [1] [2] The purpose of the technique is to find imperfect instances of objects within a certain class of shapes by a voting procedure.

  5. Line detection - Wikipedia

    en.wikipedia.org/wiki/Line_detection

    The Hough transform [3] can be used to detect lines and the output is a parametric description of the lines in an image, for example ρ = r cos(θ) + c sin(θ). [1] If there is a line in a row and column based image space, it can be defined ρ, the distance from the origin to the line along a perpendicular to the line, and θ, the angle of the perpendicular projection from the origin to the ...

  6. Circle Hough Transform - Wikipedia

    en.wikipedia.org/wiki/Circle_Hough_Transform

    The circle Hough Transform (CHT) is a basic feature extraction technique used in digital image processing for detecting circles in imperfect images. The circle candidates are produced by “voting” in the Hough parameter space and then selecting local maxima in an accumulator matrix. It is a specialization of the Hough transform.

  7. Random sample consensus - Wikipedia

    en.wikipedia.org/wiki/Random_sample_consensus

    A sample subset containing minimal number of data items is randomly selected from the input dataset. A fitting model with model parameters is computed using only the elements of this sample subset. The cardinality of the sample subset (e.g., the amount of data in this subset) is sufficient to determine the model parameters.

  8. Harris affine region detector - Wikipedia

    en.wikipedia.org/wiki/Harris_affine_region_detector

    In the fields of computer vision and image analysis, the Harris affine region detector belongs to the category of feature detection.Feature detection is a preprocessing step of several algorithms that rely on identifying characteristic points or interest points so to make correspondences between images, recognize textures, categorize objects or build panoramas.

  9. Scale-invariant feature transform - Wikipedia

    en.wikipedia.org/wiki/Scale-invariant_feature...

    Hough transform identifies clusters of features with a consistent interpretation by using each feature to vote for all object poses that are consistent with the feature. When clusters of features are found to vote for the same pose of an object, the probability of the interpretation being correct is much higher than for any single feature.