Search results
Results from the WOW.Com Content Network
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. [ 1 ] : 3 It has applications in a wide range of disciplines, including mechanical , aerospace , civil , chemical , and biomedical engineering , as well as geophysics , oceanography , meteorology , astrophysics ...
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases.It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of water and other liquids in motion).
For constant fluid density, the incompressible equations can be written as a quasilinear advection equation for the fluid velocity together with an elliptic Poisson's equation for the pressure. On the other hand, the compressible Euler equations form a quasilinear hyperbolic system of conservation equations .
A powerful tool in physics is the concept of dimensional analysis and scaling laws. By examining the physical effects present in a system, we may estimate their size and hence which, for example, might be neglected. In some cases, the system may not have a fixed natural length or time scale, while the solution depends on space or time.
For a compressible fluid in a tube the volumetric flow rate Q(x) and the axial velocity are not constant along the tube; but the mass flow rate is constant along the tube length. The volumetric flow rate is usually expressed at the outlet pressure. As fluid is compressed or expanded, work is done and the fluid is heated or cooled.
where ω is the growth rate of the perturbation, σ is the surface tension of the fluids, k is the wavenumber of perturbation, ρ is the fluid density, a is the initial radius of the unperturbed fluid, and I is the modified Bessel function of the first kind. By computing the growth rate as a function of wavenumber, one can determine that the ...
The solution of the equations is a flow velocity.It is a vector field—to every point in a fluid, at any moment in a time interval, it gives a vector whose direction and magnitude are those of the velocity of the fluid at that point in space and at that moment in time.
In fluid dynamics, the Burgers vortex or Burgers–Rott vortex is an exact solution to the Navier–Stokes equations governing viscous flow, named after Jan Burgers [1] and Nicholas Rott. [2] The Burgers vortex describes a stationary, self-similar flow.