Search results
Results from the WOW.Com Content Network
In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts.
In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).
In Bayesian statistics, a hyperparameter is a parameter of a prior distribution; the term is used to distinguish them from parameters of the model for the underlying system under analysis. For example, if one is using a beta distribution to model the distribution of the parameter p of a Bernoulli distribution , then:
The parameter is called the hyperparameter, while its distribution given by (,) is an example of a hyperprior distribution. The notation of the distribution of Y changes as another parameter is added, i.e. Y ∣ θ , μ ∼ N ( θ , 1 ) {\displaystyle Y\mid \theta ,\mu \sim N(\theta ,1)} .
Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. [1] In the context of machine learning and more generally statistical analysis, this may be the selection of a statistical model from a set of candidate models, given data.
English: For both hyperparameters of a model, a discrete set of values to search is defined (here, 10 values). In hyperparameter optimization with grid search, the model is trained using each combination of hyperparameter values (100 trials in this example) and the model performance (colored lines, better performance = blue) is saved.
In the second part, test functions with their respective Pareto fronts for multi-objective optimization problems (MOP) are given. The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et al. [2] and from Rody Oldenhuis software. [3]
In machine learning and statistics, the learning rate is a tuning parameter in an optimization algorithm that determines the step size at each iteration while moving toward a minimum of a loss function. [1]