Search results
Results from the WOW.Com Content Network
Carbonatation is a slow process that occurs in concrete where lime (CaO, or Ca(OH) 2 ) in the cement reacts with carbon dioxide (CO 2) from the air and forms calcium carbonate. The water in the pores of Portland cement concrete is normally alkaline with a pH in the range of 12.5 to 13.5.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Calcium bicarbonate, also called calcium hydrogencarbonate, has the chemical formula Ca(HCO 3) 2. The term does not refer to a known solid compound; it exists only in aqueous solution containing calcium (Ca 2+), bicarbonate (HCO − 3), and carbonate (CO 2− 3) ions, together with dissolved carbon dioxide (CO 2).
CaO + H 2 O → Ca(OH) 2 Ca(OH) 2 + CO 2 → CaCO 3 + H 2 O. In a laboratory, calcium carbonate can easily be crystallized from calcium chloride (CaCl 2), by placing an aqueous solution of CaCl 2 in a desiccator alongside ammonium carbonate [NH 4] 2 CO 3. [10] In the desiccator, ammonium carbonate is exposed to air and decomposes into ammonia ...
Ca 2+ + 2 HCO 3 − → CaCO 3 + CO 2 + H 2 O. While the biological carbon pump fixes inorganic carbon (CO 2) into particulate organic carbon in the form of sugar (C 6 H 12 O 6), the carbonate pump fixes inorganic bicarbonate and causes a net release of CO 2. [20] In this way, the carbonate pump could be termed the carbonate counter pump.
16.1 Ra. 16.2 Rn. 16.3 Re. 16.4 Rh. 16.5 Rb. ... Calcium hydride – CaH 2; Calcium hydroxide – Ca(OH) 2; ... (III) oxalate – C 6 Fe 2 O 12; Iron(III) oxide ...
Calcium hydroxide is modestly soluble in water, as seen for many dihydroxides. Its solubility increases from 0.66 g/L at 100 °C to 1.89 g/L at 0 °C. [8] Its solubility product K sp of 5.02 × 10 −6 at 25 °C, [1] its dissociation in water is large enough that its solutions are basic according to the following dissolution reaction:
Burning (calcination) of calcium carbonate in a lime kiln above 900 °C (1,650 °F) [4] converts it into the highly caustic material burnt lime, unslaked lime or quicklime (calcium oxide) and, through subsequent addition of water, into the less caustic (but still strongly alkaline) slaked lime or hydrated lime (calcium hydroxide, Ca(OH) 2), the ...