enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    According to problem 25 in Kühnel's "Differential Geometry Curves – Surfaces – Manifolds", it is also true that two Bertrand curves that do not lie in the same two-dimensional plane are characterized by the existence of a linear relation a κ(t) + b τ(t) = 1 where κ(t) and τ(t) are the curvature and torsion of γ 1 (t) and a and b are ...

  3. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    Calculus is of vital importance in physics: many physical processes are described by equations involving derivatives, called differential equations. Physics is particularly concerned with the way quantities change and develop over time, and the concept of the "time derivative" — the rate of change over time — is essential for the precise ...

  4. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.

  5. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    In calculus, the differential represents the principal part of the change in a function = with respect to changes in the independent variable. The differential is defined by = ′ (), where ′ is the derivative of f with respect to , and is an additional real variable (so that is a function of and ).

  6. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    In complex analysis, complex-differentiability is defined using the same definition as single-variable real functions. This is allowed by the possibility of dividing complex numbers . So, a function f : C → C {\textstyle f:\mathbb {C} \to \mathbb {C} } is said to be differentiable at x = a {\textstyle x=a} when

  7. Mean value theorem - Wikipedia

    en.wikipedia.org/wiki/Mean_value_theorem

    The differentiability of can be relaxed to one-sided differentiability, a proof is given in the article on semi-differentiability. Theorem 2: If ′ = ′ for all in an interval (,) of the domain of these functions, then is constant, i.e. = + where is a constant on (,).

  8. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    Stated precisely, suppose that f is a real-valued function defined on some open interval containing the point x and suppose further that f is continuous at x.. If there exists a positive number r > 0 such that f is weakly increasing on (x − r, x] and weakly decreasing on [x, x + r), then f has a local maximum at x.

  9. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.