enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Feature detection (nervous system) - Wikipedia

    en.wikipedia.org/wiki/Feature_detection_(nervous...

    Feature detection is a process by which the nervous system sorts or filters complex natural stimuli in order to extract behaviorally relevant cues that have a high probability of being associated with important objects or organisms in their environment, as opposed to irrelevant background or noise.

  3. Feature selection - Wikipedia

    en.wikipedia.org/wiki/Feature_selection

    In machine learning, feature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret, [1] shorter training times, [2] to avoid the curse of dimensionality, [3]

  4. Feature engineering - Wikipedia

    en.wikipedia.org/wiki/Feature_engineering

    Feature engineering in machine learning and statistical modeling involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like Principal Components Analysis (PCA), Independent Component Analysis (ICA), and Linear ...

  5. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    An example is provided by Hinton and Salakhutdinov [24] where the encoder uses raw data (e.g., image) as input and produces feature or representation as output and the decoder uses the extracted feature from the encoder as input and reconstructs the original input raw data as output. The encoder and decoder are constructed by stacking multiple ...

  6. Pattern recognition - Wikipedia

    en.wikipedia.org/wiki/Pattern_recognition

    Techniques to transform the raw feature vectors (feature extraction) are sometimes used prior to application of the pattern-matching algorithm. Feature extraction algorithms attempt to reduce a large-dimensionality feature vector into a smaller-dimensionality vector that is easier to work with and encodes less redundancy, using mathematical ...

  7. Feature (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Feature_(machine_learning)

    This can be done using a variety of techniques, such as one-hot encoding, label encoding, and ordinal encoding. The type of feature that is used in feature engineering depends on the specific machine learning algorithm that is being used. Some machine learning algorithms, such as decision trees, can handle both numerical and categorical features.

  8. Relief (feature selection) - Wikipedia

    en.wikipedia.org/wiki/Relief_(feature_selection)

    Relief is an algorithm developed by Kira and Rendell in 1992 that takes a filter-method approach to feature selection that is notably sensitive to feature interactions. [1] [2] It was originally designed for application to binary classification problems with discrete or numerical features.

  9. Pandemonium architecture - Wikipedia

    en.wikipedia.org/wiki/Pandemonium_architecture

    Note that, feature demons are not meant to represent any specific neurons, but to represent a group of neurons that have similar functions. For example, the vertical line feature demon is used to represent the neurons that respond to the vertical lines in the retina image. 3 Cognitive demons: Watch the "yelling" from the feature demons.